ZMIANY MIKROPOROWATOŚCI KORZENI JĘCZMIENIA POD WPŁYWEM STRESU GLINOWEGO

Alicja Szatanik-Kloc

Instytut Agrofizyki im. Bohdana Dobrzańskiego PAN, ul. Doświadczalna 4, 20-290 Lublin e-mail: akloc@demeter.ipan.lublin.pl

S tre s z c z e n i e. Do badań wykorzystano korzenie jęczmienia jarego Ars, którego wzrost odbywał się w kulturach hydroponicznych, przy pH = 7 i pH = 4 oraz przy pH = 4 w obecności jonów glinu. Glin dodawano w formie AlCl₃ w fazie strzelania a źdźbło tak, aby jego stężenia w pożywce wynosiły 5, 10, 20 mg·dm⁻³. W oparciu o izotermy desorpcji pary wodnej i azotu wyznaczono funkcję rozkładu porów, średni promień i całkowitą objętość porów w badanym zakresie rozmiaru porów (1-50 nm). Obecność jonów wodorowych przy pH = 4 nie wpływała na badane charakterystyki porów i były one praktycznie takie same jak dla korzeni uprawianych przy pH = 7. Obecność glinu spowodowała zwiększenie frakcji mikroporów o promieniu 10-50 nm. Najprawdopodobniej, maceracja badanej tkanki korzeniowej (głównie zwiększenie przestworów międzykomórkowych na skutek rozpuszczenia się blaszki środkowej) była powodem zwiększenia się średniego promienia badanych mikroporów i całkowitej ich objętości.

Słowa kluczowe: korzeń, pH, jony glinu, izotermy desorpcji azotu i pary wodnej, funkcja rozkładu porów, objętość porów, promień porów

WSTĘP

Już na początku XX wieku wykazano, że przyczyną spadku plonowania jęczmienia na glebach kwaśnych jest nie tyle niskie pH, co wysokie stężenie jonów glinu [4]. Obecnie jego toksyczność uważana jest za główny czynnik limitujący plonowanie roślin na kwaśnych glebach mineralnych [14]. Na bezpośredni, toksyczny wpływ glinu narażone są przede wszystkim korzenie roślin. Reakcja korzenia na stres glinowy przejawia się w pierwszej kolejności zahamowaniem wzrostu elongacyjnego korzeni. Korzenie grubieją, stają się łamliwe i skrócone. Przedłużający się stres glinowy powoduje brunatnienie stożków wzrostu oraz ich zamieranie [3]. Zmiany anatomiczne obejmują uszkodzenie tkanek w strefie merystematycznej i strefie wzrostu. Zniszczeniu najpierw ulegają komórki epidermy, natomiast w wewnętrznych warstwach pojawiają się zagłębienia i szczeliny sięgające kory pierwotnej. W skrajnych przypadkach nekroza endodermy prowadzi do oddzielenia się walca osiowego. Zmiany anatomiczne i morfologiczne tkanki korzeniowej prowadzą do wyraźnego zahamowania transportu wody i soli mineralnych [5,15]. W przeciwieństwie do samych jonów wodorowych, glin powoduje również daleko idące zmiany biologiczne ultra struktury komórek [7,15], oraz zmiany powierzchni właściwej, mikroporowatości i geometrii powierzchni tkanki korzeniowej [6, 12].

Celem przeprowadzonych badań było określenie wpływu jonów glinu na mikroporowatość korzeni jęczmienia, przy zastosowaniu metody adsorpcji-desorpcji pary wodnej i adsorpcji-desorpcji azotu.

MATERIAŁY I METODY

W badaniach wykorzystano korzenie jęczmienia jarego Ars. Wzrost roślin odbywał się w kulturach wodnych, o ściśle kontrolowanym składzie pożywki i pH = 7, w cyklu dobowym 16h nocy/8h dnia, temperaturze 23°C (dzień) i 16°C (noc). Nasiona wysiano do napowietrzanych polietylenowych pojemników (o pojemności 5 dm⁻³) zaopatrzonych w styropianowe wkładki z nawierconymi otworami. Spodnią stronę wkładki zabezpieczała siatka. Pomiędzy wkładką a siatką umieszczono bibułę filtracyjna. Do każdego pojemnika wysiano po 80 nasion. W fazie strzelania w źdźbło obniżono odczyn pożywki do pH = 4 i do części pojemników dodano glin w formie AlCl₃ o stężeniu 5, 10, 20 mg·dm⁻³. Odczyn pożywki kontrolowano, co 24 godziny. Czas inkubowania w warunkach stresu glinowego wynosił 10 dni. Po tym okresie rośliny zebrano. Doświadczenie przeprowadzono w trzech powtórzeniach. Korzenie oddzielono od części nadziemnych. Zebrane korzenie roślin przepłukano 0,01 mol·dm⁻³ roztworem kwasu solnego i trzykrotnie wodą destylowaną w celu odmycia zaadsorbowanych wymiennie jonów powierzchniowych (standaryzacja próbki), po czym suszono w suszarce w temperaturze 30°C przez 48 godzin. Uzyskane w ten sposób korzenie o tzw. powietrznie suchej masie rozdzielono na dwie części. Jedna część materiału korzeniowego wykorzystano w metodzie adsorpcji-desorpcji pary wodnej, drugą w metodzie adsorpcji-desorpcji azotu [6,11].

Pomiary izoterm pary wodnej [9] przeprowadzono w oparciu o metodę Polska Norma (PN-Z-19010-1). Izotermy adsorpcji-desorpcji azotu [11] wyznaczano w temperaturze wrzenia ciekłego azotu przy wykorzystaniu firmowego aparatu Sorptomatic 1990 firmy CE FISONS i programu Milestone 200.Rozkłady rozmiaru porów określano z izoterm desorpcji azotu i pary wodnej [10]. Zakres badanych mikroporów obejmował pory o promieniu od 1-50 nanometrów.

Wartość adsorpcji (objętość kondensatu) interpolowano liniowo do wartości p/p_0 na krańcach przedziałów. Przyjęta wartość minimalna $p/p_0 = 0.35$ odpowiada

w przybliżeniu prężności adsorbatu, poniżej której adsorpcja zachodzi w monowarstwie.

Założono, że cząsteczki adsorbatu przy danym ciśnieniu pary p podlegają kondensacji kapilarnej w porach cylindrycznych o promieniu r_i (p_i). Zależność promienia porów od ciśnienia obliczano na podstawie równania Kelvina [8].

$$RTln(p/p_0) = 2V_{Mw}\gamma_w \cos\alpha_w/r(p)$$
(1)

Na podstawie równania (1) promień porów wyliczono z zależności

$$r = 2V_{Mw}\gamma_w \cos\alpha_w / RTln(p/p_0)$$
⁽²⁾

gdzie: $R \pmod^{-1} \cdot K^{-1}$ – stała gazowa w T (K) temperaturze, p – prężność pary nasyconej nad powierzchnią zakrzywioną, p_0 prężność pary nasyconej nad powierzchnią płaską, $V_M (m^3)$ jest objętością molową adsorbatu (pary wodnej, azotu), $\gamma_w (J \cdot m^{-2})$ – napięcie powierzchniowe, α_w – kąt zwilżania powierzchni fazy stałej przez ciecz, r – promień porów (nm) kapilary cylindrycznej.

W przypadku adsorbatów silnie zwilżających ściany kapilar (porów) $\alpha_w = 0$ (wówczas $\cos \alpha_w = 1$, promień porów jest praktycznie równy promieniowi krzywizny menisku adsorbatu) [8]. W dalszych obliczeniach założono więc, że $\alpha_w = 0$.

Objętość kondensatu przy danej prężności adsorbatu $v(p/p_o)$ traktowano jako sumę objętości adsorbatu (v_i) znajdującego się w porach o promieniu r_i \leq r (p/p_o), stąd całkowita objętość kondensatu we wszystkich porach jest dana jako:

$$v(p/p_0) = \sum_{i=1}^{n} v_i (r_i).$$
(3)

Do obliczeń używano danych eksperymentalnych izotermy desorpcji z zakresu p/p_0 od 0,35 do 0,98.

Jako całkowitą objętość porów przyjęto więc wartość:

$$v_t = v(p/p_0=0.98) - v(p/p_0=0.35)$$
 (4)

Po podzieleniu równania (3) przez całkowitą objętość porów, v_t, otrzymano:

$$v(p/p_0)/v_t = \sum v_i (r_i)/v_t = \sum f(r_i),$$
 (5)

gdzie f(r_i) są frakcjami poszczególnych porów. Ponieważ zakres badanych promieni porów obejmował kilka rzędów wielkości, funkcje rozkładu wielkości porów przedstawiano względem logarytmu z promienia. Dane eksperymentalne podzielono w skali logarytmicznej na 5 przedziałów: I – obejmujący frakcje porów o promieniu < 1-2,2> nm, II – <2,2-4,8> nm, III – <4,8-10,5> nm, IV – <10,5-22,9> nm, V – <22,9-50> nm.

Średnią wielkość promienia porów w badanym zakresie rozmiarów ($r_{\text{sr.}}$) obliczono ze wzoru:

$$\mathbf{r}_{sr} = 1/(2\mathbf{v}_t) \sum (\mathbf{r}_i + \mathbf{r}_{i+1}) (\mathbf{v}_{i+1} - \mathbf{v}_i)$$
(6)

gdzie v_i jest objętością adsorbatu w porach o promieniu r_i , a v_{i+1} jest objętością porów przy kolejnej, większej zadanej wartości promienia.

WYNIKI I DYSKUSJA

Na rysunku 1 przedstawiono izotermy adsorpcji-desorpcji pary wodnej i azotu. W przypadku azotu izotermy adsorpcji desorpcji na badanym materiale korzeniowym przebiegają jednakowo i pokrywają się.

Rys. 1. Izotermy adsorpcji-desorpcji pary wodnej i azotu (śr. z 3 powtórzeń) **Fig. 1.** Adsorption-desorption isotherms from water vapour and nitrogen (av. of 3 replicated experiments)

W przypadku pary wodnej izoterma desorpcji przebiega, w pewnym przedziale p/p_0^{-1} powyżej izotermy adsorpcyjnej Powstaje tzw. pętla histerezy związana ze zjawiskiem kondensacji kapilarnej. Histereza kondensacji kapilarnej jest zjawiskiem występującym bardzo często. Ogólnie można powiedzieć, że związana jest z kształtem kapilar (porów). Adsorbenty naturalne mają niejednorodną strukturę porowatą i dlatego ich pory nie zapełniają się jednocześnie, w procesie adsorpcji w miarę zapełniania się kapilar tworzą się zarówno meniski kuliste jak i cylindryczne. Natomiast w procesie desorpcji w otworach wyjściowych zamykających

kapilary tworzą się meniski kuliste. Aby w procesie desorpcji doszło do "opróżnienia" porów adsorbenta, promień r_k (promień menisku kulistego) musi stać się równy promieniowi r_c (promień menisku cylindrycznego), co ma miejsce przy obniżeniu ciśnienia pary. Prowadzi to do utworzenia się tzw. pętli histerezy kondensacji kapilarnej. Niejednorodna struktura adsorbentów naturalnych (rzeczywistych posiadających pory o różnych kształtach np. obustronnie otwarte regularne walce lub graniastosłupy, szczeliny, butelki, zdeformowane rurki) powoduje, że doświadczalne izotery adsorpcji-desorpcji par mają pętle histerezy, które są kombinacją różnych typów tych pętli (wg. klasyfikacji de Boera) [8]

Rys. 2. Izotermy desorpcji pary wodnej i azotu na korzeniach jęczmienia **Fig. 2.** Water vapour and nitrogen desorption isotherms of barley roots

Do charakterystyk porowatości adsorbentów naturalnych wykorzystuje się izotermy desorpcyjne (zakłada się jeden model występujących porów, najczęściej stosuje się pory cylindryczne otwarte z obu stron).Do charakterystyk porowatości adsorbentów naturalnych wykorzystuje się izotermy desorpcyjne (zakłada się jeden model występujących porów, najczęściej stosuje się pory cylindryczne otwarte z obu stron). Dla adsorbentów wąskoporowatych, do jakich możemy zaliczyć korzenie roślin znaczenie w procesie adsorpcji-desorpcji ma również rodzaj stosowanego adsorbatu. Większe cząsteczki adsorbatu (pole powierzchni cząsteczki azotu wynosi 1,62 nm², pole powierzchni cząsteczki wody wynosi 1,08 nm²) nie mieszczą się w "niektórych wejściowych" porach adsorbentu. Na rysunku 2 prezentowana są izotermy desorpcji pary wodnej i azotu w zakresie p/p₀ 0,35-0,98. Poniżej tej wartości adsorpcja-desorpcja dotyczy monowarstwy założono, więc, że nie zachodzą tu zjawiska kondensacji kapilarnej. Doświadczalne izotermy desorpcyjne zarówno te oznaczane azotem jak i parą wodną, dla korzeni rosnących w warunkach stresu glinowego przebiegają znacznie wyżej od izoterm desorpcyjnych oznaczanych dla korzeni bez glinu.

Fot. 1. A – przekrój podłużny korzenia jęczmienia bez Al (z lewej), z 20 mg dm³ Al (z prawej), B – fragment przekroju poprzecznego merystemy wierzchołkowej korzenia jęczmienia z 20 mg dm³ Al **Photo. 1.** A – longitudinal section of barley root - control without Al ions (left), with 20 mg dm³ Al (right). B– cross–section of apical meristem from barley roots with 20 mg dm³ Al

Na fotografii 1 możemy zaobserwować macerację tkanki badanego materiału korzeniowego inkubowanego przez 10 dni w 20 mg dm⁻³Al. Pod wpływem toksycznego stężenia glinu przestwory międzykomórkowe ulegają zwiększeniu, gdyż poszczególne komórki rozsuwają się na skutek ograniczenia cementującej roli blaszki środkowej. W samej ścianie komórkowej znajdują się delikatne pory, przez które przechodzą plazmodesmy łączące protoplasty komórek w tkance. Plazmodesmy mogą być rozmieszczone w ścianie komórkowej równomiernie, częściej jednak skupiają się w miejscach, w których w ścianie pierwotnej, a następnie i wtórnej powstają zagłębienia (jamki). Na obszarze jamki nie odkłada się ściana wtórna, a ponieważ powstają w określonych miejscach sąsiadujących komórek, tworzą się między nimi kanaliki. Kanaliki wewnątrz przedzielone są również blaszką środkowa otoczoną dwiema ścianami pierwotnymi. Blaszka środkowa zbudowana jest głównie z pektynianów wapnia. Niedobór wapnia lub jego

wypieranie przez glin powoduje zmiany cementujących właściwości pektynianów, o w konsekwencji prowadzi do rozpuszczania się blaszki środkowej.

Rys. 3. Funkcje rozkładu mikroporów w badanych korzeniach jęczmienia. Dane eksperymentalne podzielono w skali logarytmicznej na pięć przedziałów: I- obejmujący frakcje porów o promieniu <1-2,2> nm, II – <2,2-4,8> nm, III – <4,8-10,5> nm, IV – <10,5-22,9> nm, V – <22,9-50> nm **Fig. 3.** Micropore size distribution functions for barley roots. Experimental data were divided into five logarithmically equal-ranges: I – pore fractions with radius < 1-2.2> nm, II – <2.2-4.8> nm, III – <4.8-10.5> nm, IV – <10.5-22.9> nm, V – <22.9-50> nm

Jest więc prawdopodobne, że i kanaliki łączące ściany sąsiadujących komórek moga ulec rozszerzeniu. Ponadto szkielet ściany pierwotnej i wtórnej tworzą mikrofibryle celulozy, w których występują przestrzenie o promieniu ok. 1,5-15 nm. W samych mikrofibrylach znajdują się obszary krystaliczne-micele, w obszarach gdzie łańcuchy celulozy ułożone sa luźniej występują tzw. przestrzenie intermicelarne, których promień wynosi ok. 0,5nm. Przestrzenie te wypełnia tzw. macierz, którą stanowią hemicelulozy i pektyny [13]. Jony glinu łącząc się z wolnymi grupami karboksylowymi macierzy zmniejszają elastyczność ścian komórkowych konsekwencją, czego jest ich destrukcja a nawet rozrywanie [1,2,15]. Zaobserwowane na zdjęciach mikroskopowych zmiany mikrostruktury badanych korzeni najprawdopodobniej są przyczyną zmiany w rozkładach, mikroporów. Funkcje rozkładu mikroporów na badanym materiale korzeniowym zaprezentowano na rysunku 3. Zmiany (w stosunku do rozkładów mikroporów w korzeniach rosnacych bez glinu) występowały w ilości porów mniejszych o promieniu od 1nm do ok. 10 nm (rys. 3, log(r) pomiędzy wartościami 0,2 a 0,9) W tym zakresie względna ilość porów malała. Natomiast wzrastała frakcja porów większych, o promieniu powyżej 10,5 nm (rysunek 3, log (r) powyżej wartości 1,2).

r(śr.av.),nm	r(śr.av.)H ₂ O	r(śr.av.) N ₂
pH7 + pH4*	$10,8 \pm 0,35$	$18,6 \pm 0,2$
$pH4 + Al 5 mg \cdot dm^3$	$12,2 \pm 0,05$	$19,7\pm0,05$
$pH4 + Al \ 10 \ mg \cdot dm^3$	$12,4 \pm 0,15$	$20{,}8\pm0{,}5$
$pH4 + Al \ 20 \ mg \cdot dm^3$	$13,1 \pm 0,85$	$21{,}5\pm0{,}9$

Tabela 1. Średni promień mikroporów badanych korzeni (śr. z 3 powtórzeń) **Table 1.** Average radius of micropores of the studied roots (av. of 3 replicated experiments)

*Pomiędzy danymi uzyskanymi dla korzeni kontrolnych (pH = 7) i rosnącymi przy pH = 4 bez jonów Al nie otrzymano statystycznie uprawnionych różnic (test F i t student ±95% poziomie istotności) – No statistically significant differences were obtained for control roots (pH = 7) and for roots grown at pH = 4 without Al ions (F-test and Student t-test at ±95% confidence)

Pomimo, że rozkłady porów liczone z izoterm desorpcji pary wodnej i azotu są różne, a wynika to z różnych właściwości adsorbatu (między innymi wielkości cząsteczki adsorbatu) to zmiany mikroporowatości badanego materiału korzeniowego pod wpływem jonów glinu zachowały te same tendencje. Zmniejszyła się frakcja mikroporów mniejszych i zwiększyła się frakcja mikroporów większych (o promieniu powyżej 10 nm). Przykładem tego jest również przedstawiony w tabeli 1 średni promień mikroporów oraz całkowita objętość mikroporów (tab. 2). Pod wpływem toksycznego stężenia jonów glinu średni promień mikroporów zwiększył się.

Wzrosła również całkowita objętość mikroporów w badanym materiale korzeniowym. Należy zaznaczyć, że para wodna jako adsorbat pokazuje bardziej wyraźnie różnice w zmianie średniego promienia i całkowitej objętości mikroporów badanych korzeni niż azot (rys. 4).

Tabela 2. Całkowita objętość mikroporów badanych korzeni (śr. z 3 powtórzeń **Table 2.** Total volume of micropores of the studied roots (av. of 3 replicated experiments)

$v(r), mm^3 \cdot g^{-1}$	v(r) H ₂ O	v(r) N ₂
pH7 + pH4*	$778 \pm 42{,}5$	$19,8\pm0,05$
pH4 + Al 5 mg·dm ³	792 ± 31	$20{,}6\pm0{,}1$
pH4 + Al 10 mg·dm ³	832 ± 3,5	$20,9\pm0,2$
$pH4 + Al \ 20 \ mg \cdot dm^3$	$872\pm21{,}5$	$21{,}5\pm0{,}4$

*Pomiędzy danymi uzyskanymi dla korzeni kontrolnych (pH = 7) i rosnącymi przy pH = 4 bez Al nie otrzymano statystycznie uprawnionych różnic (test F i t student $\pm 95\%$ poziomie istotności) – No statistically significant differences were obtained for control roots (pH = 7) and for roots grown at pH = 4 without Al (F-test and Student t-test at $\pm 95\%$ confidence).

Rys. 4. Względne zmiany średniego promienia $(r_{str.})$ mikroporów i całkowitej ich objętości (v_t) **Fig. 4.** Relative values of average micropore radii $(r_{av.})$ and of total micropore volume (v_t)

Oszacowane poszczególne frakcje mikroporów, a dalej całkowite objętości badanych mikroporów dla kontrolnego materiału korzeniowego (bez jonów Al) są mniejsze dla próbek badanych metodą adsorpcji-desorpcji azotu, niż przy wykorzystaniu pary wodnej jako adsorbatu. Jednocześnie średni promień mikroporów dla korzeni rosnących w warunkach kontrolnych jest większy (przy wykorzystaniu azotu) od średniego promienia mikroporów szacowanych z danych desorpcyjnych izoterm pary wodnej. Oznacza to, że azot jako adsorbat nie wykrywa tych najmniejszych mikroporów stąd też prawdopodobnie mikropęknięciach ścian komórkowych, powstałe w wyniku toksycznego działania glinu, nie są wykrywane przez większe (niż cząsteczki pary wodnej) cząsteczki azotu. Główną zaś przyczyną zwiększenia się promienia mikroporów i ich całkowitej objętości, pod wpływem jonów glinu jest maceracja tkanki korzeniowej na skutek rozszerzania się przestworów międzykomórkowych. Potwierdzają to również dane literaturowe i zawarte w nich zdjęcia korzeni poddanych fitostresowi glinowemu [1,2,5,9,15].

WNIOSKI

1. Jony wodorowe nie wpłynęły istotnie na zmiany w mikroporowatości badanego materiału korzeniowego. Dopiero jony glinu spowodowały widoczne zmiany ilościowe w porowatości korzeni jęczmienia.

2. Pod wpływem fitotoksyczności Al. całkowita objętość i średni promień w badanym zakresie mikroporów (1-50 nm) wzrastał.

3. Względne zmiany mikroporowatości badanego materiału korzeniowego pod wpływem stresu glinowego są wyraźniejsze przy wykorzystaniu jako adsorbatu pary wodnej.

PIŚMIENNICTWO

- 1. Carpita N, Sabulase D, Montezinos D, Delmer DP.: Determination of the pore size of cell walls of living plant cells. Science, 205, 144-147, 1979.
- 2. **Clarkson D.T.:** Root structure and sites of ion uptake. In: Weisel Y., Eshel A., Kafkafi U. (eds) Plant roots the hidden half. Marcel Dekker Inc NY, 351-373, 1991.
- Foy C.D.: Plant adaptation to acid, aluminum toxic soils. Comm. Soil Sci. Plant Anal., 19, 959-987, 1988.
- 4. Hartwell B.L., Pember F.R.: The presence of aluminum as reason for the difference in the effect of so-called acid soil on barley and rye. Soil Sci., 6, 259-281, 1918.
- 5. Jan F.: Effects of a pregrowth period in Al-free nutrient solution on macronutrient composition of two upland rice cultivars with various Al sensitivity. Physiol. Plant., 88, 123-128, 1993.
- Józefaciuk G., Szatanik-Kloc A.: Aluminium induced changes in the surface and micropore properties of wheat roots: a study using the water vapor adsorption- desorption technique. Plant and Soil, 233, 95-108, 2001.
- McLean I.B.: The toxic aluminium reaction in com and barley roots. An ultra structural and morphological study. In Masters Abstracts. Michigan St. Univ., Ann Arbor., 259-262, 1980.
- 8. Ościk J.: Adsorpcja. PWN Warszawa, 1983.
- 9. Robards A.W.: Electron microscopy and Plant Ultrastructure. McGraw-Hill NY, 1970
- Rouquerol J, Avnir D, Fairbridge CW, Everett DH, Haynes JH, Pernicone N, Ramsay JFD, Sing KSW, Unger KK.: Recommendations for the characterization of porous solids. Pure Apple Chem., 66, 1739-1758, 1994.
- Szatanik-Kloc A.: Właściwości powierzchniowe korzeni wybranych roślin jednoliściennych i dwuliściennych, oznaczane metodą adsorpcji-desorpcji pary wodnej i azotu. Acta Agrophysica, 7(4), 1015-1027, 2006.
- 12. Szatanik-Kloc A., Józefaciuk G., Masłowski J., Muranyi A., Farkas C.: Changes in the surface properties of the young sieve roots after 24h aluminium stress. Int.Agrophysics, 15(3), 201-207, 2001.
- 13. Szweykowska A., Szweykowski J.: Botanika, T. I-morfologia. Wydawnictwo Naukowe PWN Warszawa, 2000.
- 14. Ulrich B.: An ecosystem approach to soil acidification. W: Ulrich B., Sumner M.E. (Eds) Soil Acidity, Springer-Verlag, 1990.
- Wagatsuma T., Kaneko M., Hayasaka Y.: Destruction process of plant root cells by aluminum. J. Soil Sci. Plant Nutr., 33, 161-175, 1987.

CHANGES IN MICROPORE SYSTEM OF BARLEY ROOTS UNDER AL-STRESS

Alicja Szatanik-Kloc

Institute of Agrophysics, Polish Academy of Sciences, ul. Doświadczalna 4, 20-290 Lublin e-mail: akloc@demeter.ipan.lublin.pl

A b s t r a c t. Spring barley (Ars) roots were studied. The plants were grown in hydroponic cultures, at pH = 7, pH = 4 (without Al ions), and at pH = 4 with the addition of 5, 10, 20 mg dm⁻³ of aluminium ions. The plants were stressed with different AlCl₃ concentration levels at shooting stage. The micropore

size distribution functions, average radius and total volume of micropores (1-50 nm) of the plants roots were determined from water vapour and nitrogen desorption data. The micropore characteristics of the roots at pH =4 without Al ions addition were apparently the same as those of the control roots (pH = 7). Under Al treatment the number of large pores of radius of 10-50 nm increased, indicating a possible maceration of root tissue (intercellular space increase to dissolution of the central blade). The average micropore radius and total volume micropores increased, as well.

Keywords: roots, pH, aluminium, nitrogen and water vapour desorption isotherms, distribution function of micropores, pore volume and pore radius